276°
Posted 20 hours ago

Alnicov 42MM Unbleached Pure Bone Nut Guitar Slotted Bone Nut For Strat Tele Electric Guitar 42X3.5MM

£9.9£99Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

Booker and Sutherland have now published the solutions for 42 and 3, along with several other numbers greater than 100, this week in the Proceedings of the National Academy of Sciences. However, solving 42 was another level of complexity. Professor Booker turned to MIT maths professor Andrew Sutherland, a world record breaker with massively parallel computations, and—as if by further cosmic coincidence—secured the services of a planetary computing platform reminiscent of "Deep Thought", the giant machine which gives the answer 42 in Hitchhiker's Guide to the Galaxy. If, for example, a room measures 4.42 x 3.96m (14'6" x 13'0") take the nearest measurement above, i.e. 4.50 x 4.00m (14'9" x 13'1") giving you 72 tiles.

The discovery was a direct answer to Mordell’s question: Yes, it is possible to find the next solution to 3, and what’s more, here is that solution. And perhaps more universally, the solution, involving gigantic, 21-digit numbers that were not possible to sift out until now, suggests that there are more solutions out there, for 3, and other values of k. When the sum of cubes equation is framed in this way, for certain values of k, the integer solutions for x, y, and z can grow to enormous numbers. The number space that mathematicians must search across for these numbers is larger still, requiring intricate and massive computations. The amount of work you have to do for each new solution grows by a factor of more than 10 million, so the next solution for 3 will need 10 million times 400,000 computers to find, and there’s no guarantee that’s even enough,” Sutherland says. “I don’t know if we’ll ever know the fourth solution. But I do believe it’s out there.”The original problem, set in 1954 at the University of Cambridge, looked for Solutions of the Diophantine Equation x 3+y 3+z 3=k, with k being all the numbers from one to 100.

So, the researchers optimized the algorithm by using mathematical “sieving” techniques to dramatically cut down the space of possible solutions for d. For each computer in the network, they are told, ‘your job is to look for d’s whose prime factor falls within this range, subject to some other conditions,’” Sutherland says. “And we had to figure out how to divide the job up into roughly 4 million tasks that would each take about three hours for a computer to complete.”This approach was first proposed by mathematician Roger Heath-Brown, who conjectured that there should be infinitely many solutions for every suitable k. The team further modified the algorithm by representing x+y as a single parameter, d. They then reduced the equation by dividing both sides by d and keeping only the remainder — an operation in mathematics termed “modulo d” — leaving a simplified representation of the problem. The team also developed ways to efficiently split the algorithm’s search into hundreds of thousands of parallel processing streams. If the algorithm were run on just one computer, it would have taken hundreds of years to find a solution to k=3. By dividing the job into millions of smaller tasks, each independently run on a separate computer, the team could further speed up their search. Beyond the easily found small solutions, the problem soon became intractable as the more interesting answers—if indeed they existed—could not possibly be calculated, so vast were the numbers required. To find the solutions for both 42 and 3, the team started with an existing algorithm, or a twisting of the sum of cubes equation into a form they believed would be more manageable to solve:

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment