276°
Posted 20 hours ago

Over the Sink Colander Strainer Basket, Expandable Collapsable Collinders Vegetable/Fruit Washing Basket,Double Layered Collaspable Collider Portable Fruit Washer Pasta Strainer (White)

£9.71£19.42Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

Cosmic rays hit the Earth, the sun, other stars and all the myriad denizens of the universe with energies that far exceed those of the LHC. This happens all the time. If there were any danger, we would see some of these objects disappearing before our eyes. And yet we don't. Thus, we can conclude that whatever happens in the LHC, it poses exactly, precisely, inarguably, zero danger. And you can't forget the crucial point that this argument works for all conceivable dangers, including those that nobody has imagined yet. And it is that last worry that could have potentially been so troubling to the LHC's creators. When you don't know what you don't know, you … well … you don't know. Such a question requires a powerful and definitive answer. And here it is… Why the LHC is totally safe But the Standard Model is not the be-all and end-all of physics. It falls short in providing explanations for mysteries such as the existence of dark matter or dark energy, or why gravity is so different from other fundamental forces. The LHC's biggest moment came in 2012 with the discovery of the Higgs boson. Although widely referred to as the "God particle", it's not really as awesome in itself as that name might suggest. Its huge significance came from the fact that it was the last prediction of the Standard Model that hadn't yet been proven. But the Higgs boson is far from being the LHC's only discovery.

Two of the four collision points around the circumference of the LHC are occupied by large general-purpose detectors. These include the Compact Muon Solenoid (CMS), which can be thought of as a giant 3D camera, snapping images of particles up to 40 million times per second. A recent example occurred in January 2022, when CERN scientists announced " evidence of X particles in the quark-gluon plasma produced in the Large Hadron Collider." Hiding behind that technospeak is the eye-popping fact that CERN succeeded in recreating a situation that hasn't occurred naturally since a few microseconds after the Big Bang.Aad, Georges, et al. " The ATLAS experiment at the CERN large hadron collider." Journal of instrumentation 3.S08003 (2008).

I started on ATLAS for my PhD research. I was developing new pixel sensors to improve the measurement of particles as they pass through our detector. It's really important to make them resistant to radiation damage, which is a big concern when you put the sensors close to the particle collisions. Since then, I've had the opportunity to work on a number of different projects, such as understanding how the Higgs boson and the top quark interact with each other. Now I'm applying machine learning algorithms to our data to look for hints of dark matter. One of the biggest mysteries in physics right now is, what is 85% of the matter in our universe? We call it dark matter, but we don't actually know much about it!The Compact Muon Solenoid (CMS) pictured here can capture images of particles up to 40 million times per second. (Image credit: xenotar via Getty Images) This is a beautiful time, you know, because the best time to be an experimentalist is when the theorists have run out of ideas. Because then anything we discover is new,” said David Newbold, who directs the particle physics program at Rutherford Appleton Laboratory in the U.K. and is currently leading an effort to upgrade one of the main detectors at the LHC. Sirunyan, A. M., et al. " Evidence for X (3872) in Pb-Pb Collisions and Studies of its Prompt Production at s N N= 5.02 TeV." Physical Review Letters 128.3 (2022): 032001. The energy required to create particles like the Higgs boson is measured in what are called gigaelectronvolts, or GeV. The LHC can generate collisions with an energy of 13,000 GeV -- more than a hundred times the 125 GeV mass-energy equivalence of the Higgs boson. It can produce only one Higgs boson for every 10 billion collisions, due to all the energy expended on all the lighter particles.

They are definitely hesitant,” said Cao. “They are hesitant because there are objections from people from all branches of physics. How can they get so much money for this project when there are so many other projects that need funding?” One of the key mysteries of the universe is the striking asymmetry between matter and antimatter — why it contains so much more of the former than the latter. According to the Big Bang theory, the universe must have started with equal amounts of both. Yet very early on, probably within the first second, virtually all the antimatter had disappeared, and only the normal matter we see today was left. This asymmetry has been given the technical name 'CP violation', and studying it is one of the main aims of the Large Hadron Collider's LHCb experiment.For various reasons over the years, people have speculated that experiments at CERN might pose a danger to the public. Fortunately, such worries are groundless. Take for example the N in CERN, which stands for "nuclear", according to UK Research and Innovation (UKRI). This has nothing to do with the reactions that take place inside nuclear weapons, which involve swapping protons and neutrons inside nuclei. Cosmic rays of that energy are rarer than the lower energy ones, but still 500,000,000 of them hit the Earth's atmosphere every year. Another proposed danger is a thing called a strangelet. A strangelet is a hypothetical subatomic particle composed of roughly an equal number of up, down and strange quarks. Those are but two ideas for how a supercollider could pose a threat, and there are more. We could list all of the possible dangers, but there remains something more unsettling to keep in mind: Since we don't know what happens to matter when we start studying it at energies only possible with the LHC (that is, of course, the point of building the accelerator), maybe something will happen that was never predicted. And, given our ignorance, maybe that unexpected phenomenon might be dangerous. First introduced during the late 1960s and early 1970s, supersymmetry looked promising due to its mathematical elegance and its ability to explain why gravity appears to be much weaker than the other fundamental forces and to resolve other mysteries such as dark matter.

According to CERN, when physicists come up with new theories, they always try to make sure they can be tested experimentally. That happened in the early 1960s when Peter Higgs and others developed a theory to explain why certain force-carrier particles have non-zero mass. All of those phenomena, as well as many others, cause subatomic particles to be flung across space. Mostly consisting of protons, those particles travel the lengths of the universe, stopping only when an inconvenient bit of matter gets in their way.

The paths of the particles inside the detector are controlled by a gigantic electromagnet called a solenoid. Despite weighing 12,500 metric tons, it's quite compact, as the detector's name suggests. That middle word, muon, refers to an elusive particle similar to the electron but much more massive, which requires its array of subdetectors wrapped around the solenoid. We are in a situation where the Standard Model cannot explain various phenomena,” said Gianotti. “There are many other theories, but we have no clue which one is the right one. And so, making a step forward in terms of energy scale … can help redirect our thoughts.” The bad Remember that cosmic rays are mostly protons. That's because almost all of the matter in the universe is hydrogen, which consists of a single proton and a single electron. When they hit the Earth's atmosphere, they collide with nitrogen or oxygen or other atoms, which are composed of protons and neutrons. Accordingly, cosmic rays hitting the Earth are just two protons slamming together — this is exactly what is happening inside the LHC. Two protons slamming together.

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment