276°
Posted 20 hours ago

Linear Algebra and Its Applications

£9.9£99Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

If any basis of V (and therefore every basis) has a finite number of elements, V is a finite-dimensional vector space. If U is a subspace of V, then dim U ≤ dim V. In the case where V is finite-dimensional, the equality of the dimensions implies U = V. Any two bases of a vector space V have the same cardinality, which is called the dimension of V; this is the dimension theorem for vector spaces. Moreover, two vector spaces over the same field F are isomorphic if and only if they have the same dimension. [9]

The study of those subsets of vector spaces that are in themselves vector spaces under the induced operations is fundamental, similarly as for many mathematical structures. These subsets are called linear subspaces. More precisely, a linear subspace of a vector space V over a field F is a subset W of V such that u + v and a u are in W, for every u, v in W, and every a in F. (These conditions suffice for implying that W is a vector space.) Branch of mathematics In three-dimensional Euclidean space, these three planes represent solutions to linear equations, and their intersection represents the set of common solutions: in this case, a unique point. The blue line is the common solution to two of these equations. A set of vectors that spans a vector space is called a spanning set or generating set. If a spanning set S is linearly dependent (that is not linearly independent), then some element w of S is in the span of the other elements of S, and the span would remain the same if one remove w from S. One may continue to remove elements of S until getting a linearly independent spanning set. Such a linearly independent set that spans a vector space V is called a basis of V. The importance of bases lies in the fact that they are simultaneously minimal generating sets and maximal independent sets. More precisely, if S is a linearly independent set, and T is a spanning set such that S ⊆ T, then there is a basis B such that S ⊆ B ⊆ T.The procedure (using counting rods) for solving simultaneous linear equations now called Gaussian elimination appears in the ancient Chinese mathematical text Chapter Eight: Rectangular Arrays of The Nine Chapters on the Mathematical Art. Its use is illustrated in eighteen problems, with two to five equations. [4] An element of a specific vector space may have various nature; for example, it could be a sequence, a function, a polynomial or a matrix. Linear algebra is concerned with those properties of such objects that are common to all vector spaces.

A vector space over a field F (often the field of the real numbers) is a set V equipped with two binary operations satisfying the following axioms. Elements of V are called vectors, and elements of F are called scalars. The first operation, vector addition, takes any two vectors v and w and outputs a third vector v + w. The second operation, scalar multiplication, takes any scalar a and any vector v and outputs a new vector a v. The axioms that addition and scalar multiplication must satisfy are the following. (In the list below, u, v and w are arbitrary elements of V, and a and b are arbitrary scalars in the field F.) [8] Axiom For every v in V, there exists an element − v in V, called the additive inverse of v, such that v + (− v) = 0

Linear Algebra Applications

dim ⁡ ( U 1 + U 2 ) = dim ⁡ U 1 + dim ⁡ U 2 − dim ⁡ ( U 1 ∩ U 2 ) , {\displaystyle \dim(U_{1}+U_{2})=\dim U_{1}+\dim U_{2}-\dim(U_{1}\cap U_{2}),} When V = W are the same vector space, a linear map T: V → V is also known as a linear operator on V. Let V be a finite-dimensional vector space over a field F, and ( v 1, v 2, ..., v m) be a basis of V (thus m is the dimension of V). By definition of a basis, the map

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment