276°
Posted 20 hours ago

Topology: A First Course

£9.9£99Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

Ocr tesseract 5.0.0-1-g862e Ocr_detected_lang en Ocr_detected_lang_conf 1.0000 Ocr_detected_script Latin Ocr_detected_script_conf 0.9936 Ocr_module_version 0.0.14 Ocr_parameters -l eng Old_pallet IA-WL-0000203 Openlibrary_edition

Access-restricted-item true Addeddate 2022-01-25 17:07:37 Autocrop_version 0.0.5_books-20210916-0.1 Bookplateleaf 0008 Boxid IA40327619 Camera Sony Alpha-A6300 (Control) Collection_set printdisabled External-identifier Firstly I apologize if this is a bit of a soft question, it's hard for me to ask this quite concretely so I do apologize if this post doesn't seem like I'm asking something immediately.The reason I've given this long explanation (because I hope it will also help others studying Topology who have similarities), is because the path most Topology students follow is the following While I certainly have a lot more Differential Topology and Algebraic Topology to learn (and I look forward to it), I also feel like I should learn a bit more of General Topology. Below are links to answers and solutions for exercises in the Munkres (2000) Topology, Second Edition. There are other subfields of topology. One subfield is algebraic topology, which uses algebraic tools to rigorously express intuitions such as “holes.” For example, how is a hollow sphere different from a hollow torus? One may say that the torus has a “hole” in it while the sphere does not. This intuition is captured by the notion of the fundamental group, which, (very) loosely speaking, is an algebraic object that counts the number of “holes” of a topological space. There are other useful algebraic tools, including various homology and cohomology theories. These can all be viewed as a mapping from the category of topological spaces to algebraic objects, and are very good examples of functors in the language of category theory; it is for this reason that many algebraic topologists are also interested in category theory. Munkres completed his undergraduate education at Nebraska Wesleyan University [2] and received his Ph.D. from the University of Michigan in 1956; his advisor was Edwin E. Moise. Earlier in his career he taught at the University of Michigan and at Princeton University. [2]

He was elected to the 2018 class of fellows of the American Mathematical Society. [5] Textbooks [ edit ] This seminar is an introduction to knot theory, and there is often one each year. Like other junior seminars, students are expected to learn and present a topic on their own. Topics covered vary, but typically include tri-colorability of knots and links, numerical knot invariants such as the crossing number, unknotting number and bridge number, and polynomial invariants such as the Jones polynomial and the Alexander-Conway polynomial. More advanced students may learn about homology invariants, such as the Khovanov homology and the Heegaard Floer homology. The study of 1- and 2-manifolds is arguably complete – as an exercise, you can probably easily list all 1-manifolds without much prior knowledge, and inexplicably, much about manifolds of dimension greater than 4 is known. However, for a long time, many aspects of 3- and 4-manifolds had evaded study; thus developed the subfield of low-dimensional topology, the study of manifolds of dimension 4 or below. This is an active area of research, and in recent years has been found to be closely related to quantum field theory in physics.If I want to broaden my knowledge of General Topology, what book do I go to next after Munkres? Should I learn some Pointfree Topology (Frame Theory)?. Also I should mention that I don't want to specialize in General Topology. James Raymond Munkres (born August 18, 1930) is a Professor Emeritus of mathematics at MIT [1] and the author of several texts in the area of topology, including Topology (an undergraduate-level text), Analysis on Manifolds, Elements of Algebraic Topology, and Elementary Differential Topology. He is also the author of Elementary Linear Algebra.

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment