276°
Posted 20 hours ago

Sun, Moon and Stars

£3.495£6.99Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

Meanwhile, the northern hemisphere is tilted away from the Sun. The light and heat from the Sun is less direct, and it is spread over a wider area so it brings less warmth. The tilt means that nights are longer, days are shorter. This is winter in the northern hemisphere. The year is the period taken by the Earth to complete an orbit around the Sun and, again, there are a number of ways in which this can be measured. But for calculating a calendar that is to remain in step with the seasons, it is most convenient to use the tropical year, since this refers directly to the Sun’s apparent annual motion. The tropical year is defined as the interval between successive passages of the Sun through the vernal equinox (i.e., when it crosses the celestial equator late in March) and amounts to 365.242199 mean solar days. The main use of cycles was to try to find some commensurable basis for lunar and solar calendars, and the best known of all the early attempts was the octaëteris, usually attributed to Cleostratus of Tenedos ( c. 500 bce) and Eudoxus of Cnidus (390– c. 340 bce). The cycle covered eight years, as its name implies, and so the octaëteris amounted to 8 × 365, or 2,920 days. This was very close to the total of 99 lunations (99 × 29.5 = 2,920.5 days), so this cycle gave a worthwhile link between lunar and solar calendars. When in the 4th century bce the accepted length of the year became 365.25 days, the total number of solar calendar days involved became 2,922, and it was then realized that the octaëteris was not as satisfactory a cycle as supposed.

At this point in the orbit, the Earth’s tilt means that the southern hemisphere is facing more towards the Sun. This means that the light and heat from the Sun is more direct and stronger. The days are the longest in the year and the nights, the shortest. This is summer in the southern hemisphere.

Are the Sun & Moon Planets?

In Scotland we experience winter at the beginning of the year. Six months later the Earth hastravelled halfway around its orbit. The southern hemisphere is now tilted away from the Sun so it is winter.At the same time it is summer in the northern hemisphere because it is now tilted more towards the Sun. The calendar dating of historical events and the determination of how many days have elapsed since some astronomical or other occurrence are difficult for a number of reasons. Leap years have to be inserted, but, not always regularly, months have changed their lengths and new ones have been added from time to time and years have commenced on varying dates and their lengths have been computed in various ways. Since historical dating must take all these factors into account, it occurred to the 16th-century French classicist and literary scholar Joseph Justus Scaliger (1540–1609) that a consecutive numbering system could be of inestimable help. This he thought should be arranged as a cyclic period of great length, and he worked out the system that is known as the Julian period. He published his proposals in Paris in 1583 under the title Opus de emendatione temporum. Venus – Kōpū – also known as Meremere-tū-ahiahi (evening star) and Tawera-i-te-atatū (morning star) The planets (initially known as wandering stars) appear to move among the fixed stars – at too fast a pace to be really useful in navigation. Also, they don’t follow consistent orbits, so they aren’t reliable for finding direction. However, they can be helpful in holding a direction because we know they rise broadly in the east and set broadly in the west and are easy to recognise. Venus is particularly bright and recognisable. The fact that neither months nor years occupied a whole number of days was recognized quite early in all the great civilizations. Some observers also realized that the difference between calendar dates and the celestial phenomena due to occur on them would first increase and then diminish until the two were once more in coincidence. The succession of differences and coincidences would be cyclic, recurring time and again as the years passed. An early recognition of this phenomenon was the Egyptian Sothic cycle, based on the star Sirius (called Sothis by the ancient Egyptians). The error with respect to the 365-day year and the heliacal risings of Sirius amounted to one day every four tropical years, or one whole Egyptian calendar year every 1,460 tropical years (4 × 365), which was equivalent to 1,461 Egyptian calendar years. After this period the heliacal rising and setting of Sothis would again coincide with the calendar dates ( see below The Egyptian calendar).

Up here on the International Space Station I don’t get affected by the seasons but on Earth the seasons are always changing: Spring, Summer, Autumn and Winter. The Earth spins three hundred and sixty five times in one year. That’s why we have three hundred and sixty five days in a year.Hipparchus, who flourished in Rhodes about 150 bce and was probably the greatest observational astronomer of antiquity, discovered from his own observations and those of others made over the previous 150 years that the equinoxes, where the ecliptic (the Sun’s apparent path) crosses the celestial equator (the celestial equivalent of the terrestrial Equator), were not fixed in space but moved slowly in a westerly direction. The movement is small, amounting to no more than 2° in 150 years, and it is known now as the precession of the equinoxes. Calendrically, it was an important discovery because the tropical year is measured with reference to the equinoxes, and precession reduced the value accepted by Callippus. Hipparchus calculated the tropical year to have a length of 365.242 days, which was very close to the present calculation of 365.242199 days; he also computed the precise length of a lunation, using a “great year” of four Callippic cycles. He arrived at the value of 29.53058 days for a lunation, which, again, is comparable with the present-day figure, 29.53059 days. Summer is when the northern hemisphere is tilted towards the Sun - this gives us longer days and means the Sun's rays are more direct, stronger and warmer.

The Sun is a star, a giant ball of burning gas. The heat and light that it gives off helps to keep everything on our planet alive. When we see the Sun moving across the sky during the day it’s because the Earth is spinning, not the Sun. While the Earth is spinning to give us day and night, it is also moving around the Sun. This movement is called an orbit. After summer it starts tilting away from the Sun again. The days get shorter and colder as we move into Autumn. Determining the Moon’s rising and setting points along with the rising and setting points of the fixed stars allows the Moon to be used to give direction during the night. The line separating light and dark in the Moon points approximately north and south since the Moon is positioned east or west of the Sun as it arcs through the night sky. The planets

Similarities Between a Comet and a Meteorite

Another early and important cycle was the saros, essentially an eclipse cycle. There has been some confusion over its precise nature because the name is derived from the Babylonian word shār or shāru, which could mean either “universe” or the number 3,600 (i.e., 60 × 60). In the latter sense it was used by Berosus ( c. 290 bce) and a few later authors to refer to a period of 3,600 years. What is now known as the saros and appears as such in astronomical textbooks (still usually credited to the Babylonians) is a period of 18 years 11 1/ 3 days (or with one day more or less, depending on how many leap years are involved), after which a series of eclipses is repeated. Let’s put a marker on Scotland. When this part of the Earth is facing the Sun it’s day time, when it’s facing away from the Sun that's night time. Winter is when the northern hemisphere (where we live) is tilted away from the Sun. Sunlight hits the northern hemisphere at a shallow angle. This spreads sunlight over a wide area so it is weaker and less warm. Winter has the coldest weather and the longest nights of the year. The month is determined by the Moon’s passage around the Earth, and, as in the case of the day, there are several ways in which it can be defined. In essence, these are of two kinds: first, the period taken by the Moon to complete an orbit of the Earth and, second, the time taken by the Moon to complete a cycle of phases. Among primitive societies, the month was determined from the phases; this interval, the synodic month, is now known to be 29.53059 days. The synodic month grew to be the basis of the calendar month. The tropical year and the synodic month are incommensurable, 12 synodic months amounting to 354.36706 days, almost 11 days shorter than the tropical year. Moreover, neither is composed of a complete number of days, so that to compile any calendar that keeps in step with the Moon’s phases or with the seasons it is necessary to insert days at appropriate intervals; such additions are known as intercalations.

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment