276°
Posted 20 hours ago

K&F Concept 67mm Variable ND Filter Adjustable Fader Neutral Density ND2 - ND32 Filter, NO Spot X Black X Issue, MRC 28-Layer, Ultra Slim, Waterproof (Nano-X Series)

£9.9£99Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

Sievi, G. et al. Towards an efficient liquid organic hydrogen carrier fuel cell concept. Energy Environ. Sci. 12, 2305–2314 (2019). M. Nasri, M. Triki, E. Dhahri, M. Hussein, P. Lachkar and E. K. Hlil, Phys. Rev. B: Condens. Matter Mater. Phys., 2013, 408, 104 CrossRef CAS.

Liu, J. et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew. Chem. 58, 1163–1167 (2019).M. A. Dar, K. Majid, M. H. Najar, R. K. Kotnala, J. Shah, S. K. Dhawan and M. Farukh, Phys. Chem. Chem. Phys., 2017, 9, 10629 RSC. Asokan, C., Thang, H. V., Pacchioni, G. & Christopher, P. Reductant composition influences the coordination of atomically dispersed Rh on anatase TiO 2. Catal. Sci. Technol. 10, 1597–1601 (2020). R. S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajdúchová, V. Enev, I. Kuřitka and Z. Kožáková, J. Magn. Magn. Mater., 2016, 399, 109–117 CrossRef CAS.

Zou, Y.-Q., von Wolff, N., Anaby, A., Xie, Y. & Milstein, D. Ethylene glycol as an efficient and reversible liquid-organic hydrogen carrier. Nat. Catal. 2, 415–422 (2019). Yan, H. et al. Single-atom Pd 1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 137, 10484–10487 (2015). Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80 (2017). Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). S. G. Gawas, S. S. Meena, P. Bhatt and V. M. S. Verenkar, Nanoscale-driven structural changes and associated superparamagnetism in magnetically diluted Ni–Zn ferrites, Mater. Chem. Front., 2018, 2(2), 300–312 RSC.Amende, M. et al. Dehydrogenation mechanism of liquid organic hydrogen carriers: dodecahydro- N-ethylcarbazole on Pd(111). Chem. Eur. J. 19, 10854–10865 (2013). Xu, H. et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 11, 3908 (2020). Forberg, D. et al. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia. Nat. Commun. 7, 13201 (2016). Sobota, M. et al. Dehydrogenation of dodecahydro- N-ethylcarbazole on Pd/Al 2O 3 model catalysts. Chem. Eur. J. 17, 11542–11552 (2011).

H. S. Aziz, S. Rasheed, R. A. Khan, A. Rahim, J. Nisar, S. M. Shah, F. Iqbal and A. R. Khan, RSC Adv., 2016, 6, 6589 RSC.

Abstract

F. Saida, H. Harzali, A. Marzouki, A. Mgaidi, A. Megriche and J. Tun, Chem. Sci., 2017, 19, 26–31 Search PubMed. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). G. Kumar, R. K. Kotnal, J. Shah, V. Kumar, A. Kumar, P. Dhiman and M. Singh, Phys. Chem. Chem. Phys., 2017, 19, 16669 RSC. Sotoodeh, F. & Smith, K. J. Structure sensitivity of dodecahydro- N-ethylcarbazole dehydrogenation over Pd catalysts. J. Catal. 279, 36–47 (2011).

Boudart, M. & Hwang, H. S. Solubility of hydrogen in small particles of palladium. J. Catal. 39, 44–52 (1975). Jiang, Z., Gong, X., Guo, S., Bai, Y. & Fang, T. Engineering PdCu and PdNi bimetallic catalysts with adjustable alloying degree for the dehydrogenation reaction of dodecahydro- N-ethylcarbazole. Int. J. Hydrog. Energy 46, 2376–2389 (2021). E. R. Kumar, C. Srinivas, M. S. Seehra, M. Deepty, I. Pradeep, A. S. Kamzin, M. V. K. Mehar and N. K. Mohan, Sens. Actuators, A, 2018, 279, 10–16 CrossRef CAS. Tew, M. W., Miller, J. T. & van Bokhoven, J. A. Particle size effect of hydride formation and surface hydrogen adsorption of nanosized palladium catalysts: L3 edge vs K edge X-ray absorption spectroscopy. J. Phys. Chem. C. 113, 15140–15147 (2009). Jeong, H. et al. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 140, 9558–9565 (2018).R. S. Pandav, R. P. Patil, S. S. Chavan, I. S. Mulla and P. P. Hankare, J. Magn. Magn. Mater., 2016, 417, 407–412 CrossRef CAS. Huang, F. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. JACS 140, 13142–13146 (2018). Z. A. Gilania, M. F. Warsic, M. N. Anjum, I. Shakird, S. Naseeme, S. Riaze and M. A. Khana, J. Alloys Compd., 2015, 639(5), 268–273 CrossRef. T. Şaşmaz Kuru, M. Kuru and S. Bağci, Structural, dielectric and humidity properties of Al–Ni–Zn ferrite prepared by co-precipitation method, J. Alloys Compd., 2018, 753, 483–490 CrossRef. where M s is the saturation magnetization and γ is the gyromagnetic ratio ( γ = 2.8 MHz Oe). The calculated values of microwave frequency are 10.6, 9.3, 8.8, and 7.5 GHz for x = 0.00, x = 0.05, x = 0.075, and x = 0.1, respectively. Actually, the obtained microwave frequency values for our samples are comparable and even much bigger than some systems used for high-frequency microwave applications noting Pr doped Cu nanoferrites (from 5.2–9.5 GHz) 64 and Al doped spinel nanoferrites (6–7 GHz). 65 Thus, we can affirm that the studied samples can be good candidates for high-frequency microwave applications.

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment